## John Sylvester## University of Glasgow |

My PhD was supervised by Agelos Georgakopoulos at the University of Warwick.

My undergrad degree was in Mathematics at University College London.

Click on arrows to expand.

We consider the sequential allocation of $m$ balls (jobs) into $n$ bins (servers) by allowing each ball to choose from some bins sampled uniformly at random. The goal is to maintain a small gap between the maximum load and the average load. In this paper, we present a general framework that allows us to analyze various allocation processes that slightly prefer allocating into underloaded, as opposed to overloaded bins. Our analysis covers several natural instances of processes, including:

As we demonstrate, our general framework implies for all these processes a gap of $\mathcal{O}(\log n)$ between the maximum load and average load, even when an arbitrary number of balls $m \geq n$ are allocated (heavily loaded case). Our analysis is inspired by a previous work of Peres, Talwar and Wieder (2010) for the $(1+\beta)$-process, however here we rely on the interplay between different potential functions to prove stabilization.

- The Caching process (a.k.a. memory protocol) as studied by Mitzenmacher, Prabhakar and Shah (2002): At each round we only take one bin sample, but we also have access to a cache in which the most recently used bin is stored. We place the ball into the least loaded of the two.
- The Packing process: At each round we only take one bin sample. If the load is below some threshold (e.g., the average load), then we place as many balls until the threshold is reached; otherwise, we place only one ball.
- The Twinning process: At each round, we only take one bin sample. If the load is below some threshold, then we place two balls; otherwise, we place only one ball.
- The Thinning process as recently studied by Feldheim and Gurel-Gurevich (2021): At each round, we first take one bin sample. If its load is below some threshold, we place one ball; otherwise, we place one ball into a second bin sample.

Random walks on graphs are an essential primitive for many randomised algorithms and stochastic processes. It is natural to ask how much can be gained by running $k$ multiple random walks independently and in parallel. Although the cover time of multiple walks has been investigated for many natural networks, the problem of finding a general characterisation of multiple cover times for worst-case start vertices (posed by Alon, Avin, Koucky, Kozma, Lotker, and Tuttle in 2008) remains an open problem. First, we improve and tighten various bounds on the stationary} cover time when $k$ random walks start from vertices sampled from the stationary distribution. For example, we prove an unconditional lower bound of $\Omega( (n/k) \log n )$ on the stationary cover time, holding for any graph $G$ and any $1 \leq k =o(n\log n )$. Secondly, we establish the stationary cover times of multiple walks on several fundamental networks up to constant factors. Thirdly, we present a framework characterising worst-case cover times in terms of stationary cover times and a novel, relaxed notion of mixing time for multiple walks called partial mixing time. Roughly speaking, the partial mixing time only requires a specific portion of all random walks to be mixed. Using these new concepts, we can establish (or recover) the worst-case cover times for many networks including expanders, preferential attachment graphs, grids, binary trees and hypercubes.

Choice and Bias for Random Walks

Multiple Random Walks on Graphs: Mixing Few to Cover Many